Log-canonical thresholds in real and complex dimension 2

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Real Log Canonical Thresholds

We introduce real log canonical threshold and real jumping numbers for real algebraic functions. A real jumping number is a root of the b-function up to a sign if its difference with the minimal one is less than 1. The real log canonical threshold, which is the minimal real jumping number, coincides up to a sign with the maximal pole of the distribution defined by the complex power of the absol...

متن کامل

Log Canonical Thresholds and Generalized Eckardt Points

Let X be a smooth hypersurface of degree n ≥ 3 in P. We prove that the log canonical threshold of H ∈ |−KX| is at least n−1 n . Under the assumption of the Log minimal model program, we also prove that a hyperplane section H of X is a cone in P over a smooth hypersurface of degree n in P if and only if the log canonical threshold of H is n−1 n . Bibliography : 20 titles.

متن کامل

Log Canonical Thresholds of Binomial Ideals

We prove that the log canonical thresholds of a large class of binomial ideals, such as complete intersection binomial ideals and the defining ideals of space monomial curves, are computable by linear programming.

متن کامل

Log Canonical Thresholds of Del Pezzo Surfaces

, or there are 22 possibilities for (a0, a1, a2, a3) found in [28]. It follows from [12], [28], [4], [1] that the inequality lct(X) > 2/3 holds in the case when X is singular and general. Example 1.4. Let X be a quasismooth hypersurface in P(a0, . . . , a4) of degree ∑4 i=0 ai − 1, where a0 6 a1 6 a2 6 a3 6 a4. Then lct(X) > 3/4 for 1936 values of (a0, a1, a2, a3, a4) (see [29]). Example 1.5. L...

متن کامل

Finite Generation of the Log Canonical Ring in Dimension Four

We treat two different topics on the log minimal model program, especially for four-dimensional log canonical pairs. (a) Finite generation of the log canonical ring in dimension four. (b) Abundance theorem for irregular fourfolds. We obtain (a) as a direct consequence of the existence of fourdimensional log minimal models by using Fukuda’s theorem on the four-dimensional log abundance conjectur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l'Institut Fourier

سال: 2018

ISSN: 1777-5310

DOI: 10.5802/aif.3229